Semiparametric variance components models for genetic studies with longitudinal phenotypes.

نویسندگان

  • Yuanjia Wang
  • Chiahui Huang
چکیده

In a family-based genetic study such as the Framingham Heart Study (FHS), longitudinal trait measurements are recorded on subjects collected from families. Observations on subjects from the same family are correlated due to shared genetic composition or environmental factors such as diet. The data have a 3-level structure with measurements nested in subjects and subjects nested in families. We propose a semiparametric variance components model to describe phenotype observed at a time point as the sum of a nonparametric population mean function, a nonparametric random quantitative trait locus (QTL) effect, a shared environmental effect, a residual random polygenic effect and measurement error. One feature of the model is that we do not assume a parametric functional form of the age-dependent QTL effect, and we use penalized spline-based method to fit the model. We obtain nonparametric estimation of the QTL heritability defined as the ratio of the QTL variance to the total phenotypic variance. We use simulation studies to investigate performance of the proposed methods and apply these methods to the FHS systolic blood pressure data to estimate age-specific QTL effect at 62cM on chromosome 17.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric maximum likelihood variance component estimation using mixture moment structure models.

Nonnormal phenotypic distributions introduce significant problems in the estimation and selection of genetic models. Here, a semiparametric maximum likelihood approach to analyzing nonnormal phenotypes is described. In this approach, distributions are explicitly modeled together with genetic and environmental effects. Distributional parameters are introduced through mixture constraints, where t...

متن کامل

Estimating Variance Components in Functional Linear Models with Applications to Genetic Heritability

Quantifying heritability is the first step in understanding the contribution of geneticvariation to the risk architecture of complex human diseases and traits. Heritabilitycan be estimated for univariate phenotypes from non-family data using linear mixedeffects models. There is, however, no fully developed methodology for defining orestimating heritability from longitudinal ...

متن کامل

A score test for variance components in a semiparametric mixed-effects model under non-normality

In this paper, we propose a score test for variance components in a semiparametric mixed-effects model when the random-effects and measurement errors are not normally distributed. The asymptotic null distribution of the test statistic is shown to be a simple chi-squared distribution with the degrees of freedom being the number of linearlyindependent variance components. The simulation results s...

متن کامل

Variable selection for semiparametric mixed models in longitudinal studies.

We propose a double-penalized likelihood approach for simultaneous model selection and estimation in semiparametric mixed models for longitudinal data. Two types of penalties are jointly imposed on the ordinary log-likelihood: the roughness penalty on the nonparametric baseline function and a nonconcave shrinkage penalty on linear coefficients to achieve model sparsity. Compared to existing est...

متن کامل

Estimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models

The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biostatistics

دوره 13 3  شماره 

صفحات  -

تاریخ انتشار 2012